

Université de Picardie Jules Verne

UFR d'économie et de gestion

Probabilités

Licence 2 - Semestre 4

Exercices d'entrainement

Analyse de la variance

Corrigés

Correction 1

Population 1 : les hommes dans l'industrie agro-alimentaire

Population 2 : les femmes dans l'industrie agro-alimentaire

Variable X_1 : salaire, variable aléatoire de moyenne μ_1 et de variance σ_1^2 (inconnues).

Variable X_2 : salaire, variable aléatoire de moyenne μ_2 et de variance $\sigma_2^{\bar{2}}$ (inconnues).

L'échantillon (e_1) de X_1 est de taille $n_1 = 25 + 15 + 15 + 5 + 5 = 65$.

L'échantillon (e_2) de X_2 est de taille $n_2 = 5 + 10 + 15 + 5 + 0 = 35$.

L'estimation ponctuelle de μ_1 est faite par $\overline{x_1}$:

$$\overline{x_1} = \frac{25 \times 12 + 15 \times 16 + 15 \times 20 + 5 \times 27 + 5 \times 41}{65} = \frac{1180}{65} \approx 18,154$$

$$\overline{x_1} = \frac{25 \times 12 + 15 \times 16 + 15 \times 20 + 5 \times 27 + 5 \times 41}{65} = \frac{1180}{65} \approx 18,154.$$
De plus,
$$\overline{x_1^2} = \frac{25 \times 12^2 + 15 \times 16^2 + 15 \times 20^2 + 5 \times 27^2 + 5 \times 41^2}{65} = \frac{25490}{65} \approx 392,15.$$

Et donc,
$$s_{c,1}^2 = \frac{65}{64}(392, 15 - 18, 154^2) \approx 63,57$$
 qui est un estimateur de σ_1^2 .

De même, l'estimation ponctuelle de μ_2 est faite par $\overline{x_2}$:

$$\overline{x_2} = \frac{5 \times 12 + 10 \times 16 + 15 \times 20 + 5 \times 27 + 0 \times 41}{65} = \frac{655}{35} \approx 18,714.$$

$$\overline{x_2} = \frac{5 \times 12 + 10 \times 16 + 15 \times 20 + 5 \times 27 + 0 \times 41}{65} = \frac{655}{35} \approx 18,714.$$
De plus,
$$\overline{x_2^2} = \frac{5 \times 12^2 + 10 \times 16^2 + 15 \times 20^2 + 5 \times 27^2 + 0 \times 41^2}{65} = \frac{12935}{35} \approx 369,2857.$$

Et donc,
$$s_{c,2}^2 = \frac{35}{34}(369, 2857 - 18, 714^2) \approx 19,6218$$
 qui est un estimateur de σ_2^2 .

Test par ANOVA de $H_0: \mu_1 = \mu_2$ contre $H_1: \mu_1 \neq \mu_2$.

On compare k=2 moyennes avec deux échantillons avec $n=n_1+n_2=65+35=100$.

De plus,
$$\overline{x} = \frac{1180 + 655}{100} = 18,35.$$

On a
$$s_r^2 = \frac{1}{100-2} \left(64 \times 63, 57 + 34 \times 19, 62 \right) \approx 48, 32$$

Et
$$s_F^2 = \frac{1}{2-1} (65 \times (18,154 - 18,35)^2 + 35 \times (18,714 - 18,35)^2) \approx 7,1456$$

Et donc
$$f = \frac{7,1456}{48,32} \approx 0,14787.$$

Pour $\alpha = 0,05$ et (k-1,n-k) = (2-1,100-2) = (1,98) degrés de liberté, grâce à la table de Fisher-Snédécor, on trouve que f_{max} est compris entre 3,94 et 3,96.

Comme $f < f_{\alpha}$, on ne peut rejeter H_0 au risque $\alpha = 0,05$: il n'y a pas de différence significative.

Correction 2

Population 1: La surface traitée avec une concentatrion de 200 mg/l de désherbant.

Population 2: La surface traitée avec une concentatrion de 300 mg/l de désherbant.

Population 3: La surface traitée avec une concentatrion de 400 mg/l de désherbant.

Variables X_1, X_2 et X_3 : le temps de désagrégation pour chacune de ces concentrations, variables aléatoires de moyennes respectives μ_1 , μ_2 et μ_3 et de variance respectives σ_1^2 , σ_2^2 et σ_3^2 (toutes inconnues).

L'échantillon (e_1) de X_1 est de taille $n_1=10$, de moyenne $\overline{x_1}=19$ et de variance corrigée $s_{c,1}^2 = \frac{10}{9} \times 18 = 20.$

L'échantillon (e_2) de X_2 est de taille $n_2=15$, de moyenne $\overline{x_2}=21$ et de variance corrigée $s_{c,2}^2 = \frac{15}{14} \times 21 = 15.$

L'échantillon (e_3) de X_3 est de taille $n_3=5$, de moyenne $\overline{x_3}=27$ et de variance corrigée $s_{c,2}^2 = \frac{5}{4} \times 24 = 30.$

Test de Bartlett (nécessaire pour mettre en œuvre l'ANOVA puisque l'on n'a aucune information sur les variances) : on trouve $\lambda \approx 1,066$ et $b \approx 0,81$. Grâce à la table du χ^2 avec d.l.l = 2 et $\alpha = 0,005$, on trouve $b_{\text{max}} = 5,991$. Puisque $b < b_{\text{max}}$, on peut supposer que les variances σ_1^2 , σ_2^2 et σ_3^2 sont égales.

On peut donc tester, par ANOVA, $H_0: \mu_1 = \mu_2 = \mu_3$ contre $H_1:$ au moins de deux de ces moyennes sont différentes.

On compare k = 3 moyennes avec trois échantillons avec $n = n_1 + n_2 + n_3 = 10 + 15 + 5 = 30$.

De plus,
$$\overline{x} = \frac{10 \times 19 + 15 \times 21 + 5 \times 27}{30} = \frac{640}{30} \approx 21,33.$$

On a
$$s_r^2 = \frac{1}{30-3} (9 \times 20 + 14 \times 15 + 4 \times 30) \approx 18,89$$

Et
$$s_F^2 = \frac{1}{3-1} (10 \times (19-21,33)^2 + 15 \times (21-21,33)^2 + 5 \times (27-21,33)^2) \approx 108,33$$

Et donc
$$f = \frac{108,33}{18,89} \approx 5,73.$$

Pour $\alpha=0,05$ et (k-1,n-k)=(3-1,30-3)=(2,27) degrés de liberté, grâce à la table de Fisher-Snédécor, on trouve $f_{\rm max} \approx 3,35$.

Comme $f > f_{\alpha}$, on rejette H_0 au risque $\alpha = 0,05$: la différence de moyenne est significative.

Correction 3

Population 1: Les caddies en petite surface.

Population 2: Les caddies en moyenne surface.

Population 3: Les caddies en grande surface.

Variables X_1 , X_2 et X_3 : la valeur du caddie, variables aléatoires de moyennes respectives μ_1 , μ_2 et μ_3 et de variance respectives σ_1^2 , σ_2^2 et σ_3^2 (toutes inconnues).

L'échantillon
$$(e_1)$$
 de X_1 est de taille $n_1 = 10$, de moyenne $\overline{x_1} = \frac{5 \times 30 + 3 \times 70 + 2 \times 120}{5 + 3 + 2} = 60$ (euros) et de variance corrigée $s_{c,1}^2 = \frac{10}{9} \left(\frac{5 \times 30^2 + 3 \times 70^2 + 2 \times 120^2}{5 + 3 + 2} - 60^2 \right) \approx 1333, 33.$

(euros) et de variance corrigée
$$s_{c,1}^2 = \frac{10}{9} \left(\frac{5 \times 30^2 + 3 \times 70^2 + 2 \times 120^2}{5 + 3 + 2} - 60^2 \right) \approx 1333, 33.$$

L'échantillon (e_2) de X_2 est de taille $n_2 = 40$, de moyenne $\overline{x_2} = 78,75$ (euros) et de variance corrigée $s_{c,2}^2 \approx 1293$.

L'échantillon (e_3) de X_3 est de taille $n_3=100$, de moyenne $\overline{x_3}=72$ (euros) et de variance corrigée $s_{c,2}^2\approx 816$.

Puisque les variances sont supposées égales, on ne fait pas le test de Bartlett.

On teste, par ANOVA, $H_0: \mu_1 = \mu_2 = \mu_3$ contre $H_1:$ au moins de deux de ces moyennes sont différentes.

On compare k = 3 moyennes avec trois échantillons avec n = 150.

De plus, le montant moyen du caddy est $\overline{x} = 73$.

On obtient $s_r^2 \approx 979,847$ et $s_F^2 \approx 1556,25$. Et donc $f \approx 1,59$.

Pour $\alpha = 0,05$ et (k-1,n-k) = (3-1,150-3) = (2,147) degrés de liberté, grâce à la table de Fisher-Snédécor, on trouve que f_{max} est compris entre 3,09 et 3,06.

Comme $f < f_{\alpha}$, on ne peut pas rejeter H_0 au risque $\alpha = 0,05$: la différence de moyenne n'est pas significative.

Correction 4

Il s'agit d'un test d'Anova à deux facteurs.

	Adjuvant	Age					$\overline{x_{i,j}}$	$\overline{(x_{i,j})^2}$	$s_{i,j}^2$	$s_{c,i,j}^2$
$x_{(1,1)}$	A	< 50	5	6	12	9	8	71,5	7,5	10
$x_{(1,2)}$	A	≥ 50	1	2	5	4	3	11,5	2,5	3,33
$x_{(2,1)}$	В	< 50	7	8	10	11	9	83,5	2,5	3,33
$x_{(1,2)}$	В	≥ 50	4	4	3	9	5	30,5	5,5	7,33

Si l'on considère l'ensemble des données, on obtient :

- la moyenne : $\overline{x} = 6,25$
- la moyenne des carrés : $\overline{x^2} = 49,25$
- la variance corrigée : $s_t^2 \approx 10,87$.

Le nombre de modalités de chacun des facteurs est r=2 et q=2. Dans chacune des classes, on a un échantillon de n=4.

De plus, $s_r^2 = 6$.

Moyenne "Adjuvant A": $\overline{x_{1,\star}} = 5, 5$.

Moyenne "Adjuvant B": $\overline{x_{2,\star}} = 7$.

Moyenne "moins de 50 ans" : $\overline{x_{\star,1}} = 8, 5$.

Moyenne "50 ans ou plus" : $\overline{x_{\star,2}} = 4$.

On obtient $s_A^2 = 9$, $s_B^2 = 81$ et $s_{AB}^2 = 1$.

1. On a $f_A = 1, 5, v_1 = r - 1 = 1, v_2 = (n - 1)rq = 12$ et $f_{\text{max}} = 4, 75$.

Puisque $f_A < f_{\text{max}}$, on ne peut pas rejeter $H_{0,A}$: l'adjuvant A n'a pas d'influence sur le taux d'anticorps.

2. On a $f_B = 13, 5, v_1 = q - 1 = 1, v_2 = (n - 1)rq = 12$ et $f_{\text{max}} = 4, 75$.

Puisque $f_B > f_{\text{max}}$, on rejette $H_{0,B}$: l'âge a une influence sur le taux d'anticorps.

3. On a $f_{AB} \approx 0.16$, $v_1 = (r-1)(q-1) = 1$, $v_2 = (n-1)rq = 12$ et $f_{\text{max}} = 4.75$.

Puisque $f_{AB} < f_{\text{max}}$, on ne peut pas rejeter $H_{0,A}$: il n'y a pas d'interaction significative.

Correction 5

Il s'agit d'un test d'anova à deux facteurs avec n = 1. En particulier, pour tout couple (i, j), on a $\overline{x_{i,j}} = x_{i,j}$.

Le type de vaccins possède r=4 modalités et l'âge possède q=3 modalités.

Vaccin	a	b	c	d	Moyenne $\overline{x_{i,*}}$
20 ans ou moins	80	90	95	95	90
compris entre 21 et 59 ans	75	90	90	85	85
60 ans ou plus	70	75	70	60	68,75
Moyenne $\overline{x_{*,j}}$	75	85	85	80	

On obtient $\overline{x} = 81,25$, $s_A^2 = 68,75$ et $s_B^2 = 493,5$.

$\overline{x_{i,j}} - \overline{x_{i,\star}} - \overline{x_{\star,j}} + \overline{x}$	a	b	c	d
20 ans ou moins	-3,75	-3,75	1,25	6,25
compris entre 21 et 59 ans	-3,75	1,25	1,25	1,25
60 ans ou plus	7,5	2, 5	-2, 5	-7, 5

$$s_{AB}^2 \approx 35,42$$

- 1. On a $f_A \approx 1,94$ $v_1 = r 1 = 3$, $v_2 = (r 1)(q 1) = 6$ et $f_{\text{max}} = 4,76$. Puisque $f_A < f_{\text{max}}$, on ne peut pas rejeter $H_{0,A}$: le type de vaccin n'a pas d'influence sur le taux de protection.
- 2. On a $f_B \approx 13,94$, $v_1 = q 1 = 2$, $v_2 = (r 1)(q 1) = 6$ et $f_{\text{max}} = 5,14$ Puisque $f_B \geq f_{\text{max}}$, on rejette $H_{0,B}$: l'âge a une influence sur le taux de protection.