

Université de Picardie Jules Verne UFR d'économie et de gestion

Mathématiques - Probabilités

Licence 2

TD 4 Enoncés Semestre 4

1 Mathématiques

Exercice 1

1. Déterminer les dérivées partielles premières et secondes des fonctions suivantes :

a.
$$f: \mathbb{R}^* \times \mathbb{R} \to \mathbb{R}; (x, y) \mapsto x^2 y^3 + \frac{1}{x}$$

b. $g: \mathbb{R}^+ \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}; (x, y, z) \mapsto y \ln x + 3y e^z + \sqrt{x}$

2. Déterminer les dérivées partielles premières de la fonction :

$$h: \mathbb{R}^4 \to \mathbb{R} \ ; \ (x, y, z, t) \mapsto xye^{t^2} + xz$$

Exercice 2

Etudier les extrema locaux des fonctions suivantes :

a.
$$f: \mathbb{R}^2 \to \mathbb{R}; \ (x,y) \mapsto xy^2 + 2x^2 + y^2$$

b.
$$f: \mathbb{R}_+^* \times \mathbb{R} \to \mathbb{R}; \ (x,y) \mapsto y^2 + 2xy \ln x$$

2 Probabilités

Exercice 3

Pour le changement d'une partie de sa flotte de véhicules utilitaires, une entreprise de livraison s'intéresse à leurs consommations via deux paramètres qui sont le type de véhicule $(a \ a \ d)$ et le type de parcours (urbain, périurbain ou rural).

Le tableau ci-dessous rend compte de l'évaluation :

	Urbain	Périurbain	Rural	
a	19	17	9	
b	14	12	10	
c	16	19	10	
d	19	14	9	

On suppose que les échantillons sont issus de populations gaussiennes de même variance.

- 1. Le choix du véhicule a-t-il une influence sur la consommation?
- 2. Le choix du parcours a-t-il une influence sur la consommation?

$\overline{\overline{x_{i,j}} - \overline{x_{i,\star}} - \overline{x_{\star,j}} + \overline{x}}$	Urbain	Périurbain	Rural
a			
b			
c			
d			

Exercice 4

Dans un service d'une entreprise, on utilise deux types de machines. Pour évaluer une différence possible de rentabilité des machines, on a effectué un test sur une partie des employés les utilisant.

Les résultats de la moyenne horaire d'une production journalière sont résumés par le tableau suivant :

Employés utilisant une machine de type 1 :	6,5	5,5	8	7	6		
Employés utilisant une machine de type 2 :	7	8,5	8	7,5	9	7,2	8,2

Sachant que l'on ne fait aucune hypothèse sur la loi suivie par la variable étudiée, peut-on admettre que le type de machine améliore le rendement?